If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 13z2 + 49z + -2 = 0 Reorder the terms: -2 + 49z + 13z2 = 0 Solving -2 + 49z + 13z2 = 0 Solving for variable 'z'. Begin completing the square. Divide all terms by 13 the coefficient of the squared term: Divide each side by '13'. -0.1538461538 + 3.769230769z + z2 = 0 Move the constant term to the right: Add '0.1538461538' to each side of the equation. -0.1538461538 + 3.769230769z + 0.1538461538 + z2 = 0 + 0.1538461538 Reorder the terms: -0.1538461538 + 0.1538461538 + 3.769230769z + z2 = 0 + 0.1538461538 Combine like terms: -0.1538461538 + 0.1538461538 = 0.0000000000 0.0000000000 + 3.769230769z + z2 = 0 + 0.1538461538 3.769230769z + z2 = 0 + 0.1538461538 Combine like terms: 0 + 0.1538461538 = 0.1538461538 3.769230769z + z2 = 0.1538461538 The z term is 3.769230769z. Take half its coefficient (1.884615385). Square it (3.551775149) and add it to both sides. Add '3.551775149' to each side of the equation. 3.769230769z + 3.551775149 + z2 = 0.1538461538 + 3.551775149 Reorder the terms: 3.551775149 + 3.769230769z + z2 = 0.1538461538 + 3.551775149 Combine like terms: 0.1538461538 + 3.551775149 = 3.7056213028 3.551775149 + 3.769230769z + z2 = 3.7056213028 Factor a perfect square on the left side: (z + 1.884615385)(z + 1.884615385) = 3.7056213028 Calculate the square root of the right side: 1.92499904 Break this problem into two subproblems by setting (z + 1.884615385) equal to 1.92499904 and -1.92499904.Subproblem 1
z + 1.884615385 = 1.92499904 Simplifying z + 1.884615385 = 1.92499904 Reorder the terms: 1.884615385 + z = 1.92499904 Solving 1.884615385 + z = 1.92499904 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.884615385' to each side of the equation. 1.884615385 + -1.884615385 + z = 1.92499904 + -1.884615385 Combine like terms: 1.884615385 + -1.884615385 = 0.000000000 0.000000000 + z = 1.92499904 + -1.884615385 z = 1.92499904 + -1.884615385 Combine like terms: 1.92499904 + -1.884615385 = 0.040383655 z = 0.040383655 Simplifying z = 0.040383655Subproblem 2
z + 1.884615385 = -1.92499904 Simplifying z + 1.884615385 = -1.92499904 Reorder the terms: 1.884615385 + z = -1.92499904 Solving 1.884615385 + z = -1.92499904 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-1.884615385' to each side of the equation. 1.884615385 + -1.884615385 + z = -1.92499904 + -1.884615385 Combine like terms: 1.884615385 + -1.884615385 = 0.000000000 0.000000000 + z = -1.92499904 + -1.884615385 z = -1.92499904 + -1.884615385 Combine like terms: -1.92499904 + -1.884615385 = -3.809614425 z = -3.809614425 Simplifying z = -3.809614425Solution
The solution to the problem is based on the solutions from the subproblems. z = {0.040383655, -3.809614425}
| 8y^2-34y+35=0 | | 3+4(w+1)=5w-9 | | 6b^2+95b-16=0 | | 12t^2+40t-7=0 | | 18y^2-325y+18=0 | | 3+4(w+4)=5w-9 | | 15z^2-46z+35=0 | | 0.01-1.5=0.009 | | 10-6vb=-104 | | 5b^2+26b-63=0 | | 12x^2+48x-36=0 | | 12x^2+48-36=0 | | 5b^5+26b-63=0 | | 9x^3+42x^2y+49xy=0 | | 2(u+5)=8u-2 | | 24/0.02 | | (6y-7)(6y-2w+3)= | | 35x+205=12x+12 | | -15+y=8y-10+30 | | 1.2n+2=6.8 | | 1/4×268 | | 39p^2-10p^3-p^4=0 | | 28y^3+188y^2-56y=0 | | 40z^2-116z+40=0 | | 8x^2-63xy+49y=0 | | -x^2+9x+1=0 | | X^4+4x-2k=0 | | Y=x^4-k | | 63x-12x^2-3x^3=0 | | 3z^2+95z+12=0 | | 36x^2+99x-27=0 | | 12.15= |